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Multispeetral Observations of the Jovian Aurora

Introduction

The upper atmospheres of the Earth and the outer planets form a screen on which

precipitating charged particles, like the electron beam in a television, trace fleeting, but revealing

patterns of visible, ultraviolet, infrared, and x ray emissions that offer valuable clues to processes

occurring within the planetary magnetospheres. At Earth, years of in situ measurements, as well

as ground based observations, have yielded a picture (still fuzzy) where the interaction of the

solar wind with the magnetosphere of the Earth provides a complex path for the storage and

release of energy during magnetic substorms; the ultimate manifestation of terrestrial auroral

processes. More recent global imaging of substorm events from high above the Earth (> 3.5 Re)

by Dynamics Explorer have made a unique contribution towards understanding the global and

temporal evolution of such auroral events by providing a morphological perspective and by

providing the crucial observational link that allows the separation of spatial and temporal

variations inherent in the interpretation of in situ data. A similar role was played by the Hubble

Space Telescope (HST) during the recent encounter of Ulysses with Jupiter February, 1992 in

helping to define a new paradigm in Jovian auroral physics. The old paradigm portrayed Jupiter's

magnetosphere as totally dominated by internal processes (ie. Io related tori, heavy ions, etc.)

where energetic heavy ion precipitation in the inner magnetosphere was solely responsible for

the observed auroral phenomena. Ulysses and HST portray a more Earth-like paradigm where

electron acceleration in the outer magnetosphere near the boundary with the solar wind plays a

distinct role in the formation of auroral hot spots, yet energetic heavy ions also enter into the

picture [this paper; Dols et al., 1992] (similar to the role of the energetic ions from the terrestrial

ring current during magnetic substorms). These heavy ions as a result of excitation during their

transit through the atmosphere produce the x ray emissions observed in Roentgensatellit

(ROSAT) x ray energy spectra.

The ultraviolet spectrometers on the Voyager 1 and 2 spacecrati [Sandel et al., 1979;

Broadfoot et al., 1981] and the International Ultraviolet Explorer (IUE) spacecraft [Clarke et al.,

1980; Yung et al., 1982] observed intense H2 Lyman and Werner band emissions from the Jovian

atmosphere at high latitudes, thus providing evidence for auroral particle precipitation at Jupiter.

Observations in the infrared [Caldwell et al., 1980; 1983] showed spatial dependencies similar

to those at ultraviolet wavelengths. X ray emissions were seen by the High Energy Astronomical

Observatory 2 (Einstein) in the Jovian auroral zone [Metzger et al., 1983]. Taken together, these

observations provide indications of an aurora more than 100 times more powerful (> 1013 Watts)

than Earth's, which has a strong influence on the high-latitude structure, dynamics, and energetics

of the upper atmosphere of Jupiter.

Earlier observations of the Jovian x ray aurora [Metzger et al., 1983] and in situ

measurements of energetic oxygen and sulfur [Gehrels and Stone, 1983] indicated that energetic

sulfur and oxygen were precipitating into the high-latitude Jovian atmosphere and were largely

responsible tbr the observed ultraviolet auroral emissions. Building on the earlier work

concerning electron aurora [Waite et al., 1983], Horanyi et al. [1988] developed a quantitative



model of the interactionof energeticoxygenions and atomswith an H2, H atmosphere.The
model results indicatedthat sulfur and oxygenemissionsin the ultraviolet at 1256and 1304
angstromsshouldbedetectablewith theIUE UV telescope.Subsequentobservationsandanalysis,
however,showedno detectableemissionat 1304angstromsand anuncertaindetectionat 1256
angstroms[Waite et al., 1988].This leadWaite andcolleaguesto concludethat the bulk of the
observableUV auroral emissionsare probably due to electronsand that the ions that do
precipitatearequite energetic(>300 KeV/nucleon)andareresponsiblefor the x ray emissions,
but do not makea significantcontributionto theultraviolet auroralemissions.

The conclusion of Waite et al. [1988] was not readily endorsedby the Jupiter
magnetosphericcommunity, which continued to embracethe dominant role of heavy ion
precipitationasasourcefor theJovianaurora.Until recentlylittle newobservationalinformation
was available to allow a re-examinationof the energeticion paradigm.However, the recent
Ulyssesencounterwith Jupiterand thecoordinatedHST auroralimagingcampaignreportedin
this paper presentnew evidencefor an expandedrole for electronsand associationof the
ene_etic electron source with the Jovian magnetopauseboundary. In addition, ROSAT
observationsconfirm the role of energeticheavyions in x ray production,but suggestthat the
sourceis limited to energiesgreaterthan300 KeV/nucleon and as suggestedby Waite et al.
[ 1988]comprisesonly a tractionof themeasuredultravioletemission.Thus,a newparadigmof
Earth-likeauroralprocessesappearsto beemergingfrom theseexciting new results.

Hubble Space Telescope Faint Object Camera Images: Observations and Analysis

Three separate HST investigations were scheduled and carried out with the FOC using

three different filter sets. They were: 1) Caldwell et al. (F140W & F152M), 2) Paresce et al.

(FI20M &F140W), and 3) Stern et al. (F130M & F140W). The observations were obtained from

February 6-9, 1992 in the four days surrounding the Ulysses spacecraft's closet approach to

Jupiter. The images reported here are from the Stem, McGrath, Waite, Gladstone, and Trafton

investigation using the FOC in a t796 512 by 512 pixel mode (F96N512) with filters F130M and

F140W that have a peak spectral response near 1280 angstroms. The field-of-view was 11 x 11

arcseconds and the exposure time tbr each of the eight images was 18 minutes. The center of the

field-of-view was offset 20 arcseconds toward the appropriate Jupiter rotational pole during each

observation with a pointing accuracy of approximately 1 arcsecond. For a point of reference

Jupiter's polar radius during the time of these observations was approximately 20.54 arcseconds.

A summary of the images obtained is shown in Table 1 where we have listed the time of

observation, the Sm longitude of the central meridian at the midpoint of the observation, the pole

observed, the intensity of noticeable features in the image, the emission area, and a rough

estimate of the range of the emission power (taking into account the low signal to noise ratio of

the data, the difficulty in determining the physical area of the emission, and the uncertainties clue

to atmospheric absorption).

The determination of the auroral emission power requires that a convolution of the FOC

wavelength dependent quantum efficiency (QE) and filter response functions be convoluted with
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the auroralH, H_spectrum.This was accomplishedby modeling both the altitude dependent
Lyman alphaandH__Lyman andWernerproductionrateprofiles ]Waite et al., 1983]assuming
a low latitudehydrocarbonverticaldistribution[Gladstone and Skinner, 1989] and a precipitating

electron spectrum consistent with those observed by Ulysses in the outer magnetosphere

[Lanzerotti et al., 1992] and extended down to energies of 20 KeV (below the detector threshold

of 44.9 KeV) with the same power law slope in the distribution. The extension to lower electron

energies was perlbrmed to match the H z band color ratio (a measure of the lower energy extent

of the precipitating electron distribution for a specified methane vertical profile) generally

observed in the Jovian auroral zone [Yung et al., 1980; Waite et al., 19881. These production rate

values were then used as input to a radiative transfer code [Gladstone and Skinner, 1988] (for

output see Figure la) and then passed through an FOC QE/filter response to produce the synthetic

spectrum seen in Figure lb. As you can see the FI30M F140W filter pair responds to both

Lyman alpha and Werner band emission near 1280 angstroms, whereas the Paresce images are

more sensitive to Lyman alpha and the Caldwell images to Lyman emission near 1580 angstroms.

The latter wavelength region is less susceptible to methane absorption, thus it's specification in

the upper wavelength range of the Yung et al. [ 1980] H_ band color ratio:

CR= Intensity(1557-1619 angstroms)/Intensity( 1230-1300 ang.)

A comparison of the relative spectral responses of the three different filter combinations is shown

in Table 2. In order to verify that this approach for determining the integrated auroral flux from

the limited bandpass 130M 140W combination was not overly sensitive to the assumed methane

vertical profile or to the assumed electron energy spectrum used in the modeling we repeated the

QE/filter convolution with a measured IUE Jovian auroral spectrum and got the same result to

within 20%. We then used the predicted FOC count rates and compared them to the measured

rates along with constants that define the telescope's effective area to estimate the power influx

levels required to produce the observed auroral emissions (shown in Table 1).

Two images of the north auroral zone (NAZ) and six images of the south auroral zone

(SAZ) were obtained over the 4 day span. Five images (1 of the NAZ, 4 of the SAZ) showed

emission (>1 sigma) above the image dark count. These five images are shown in Figures 2a and

2b. The image has been processed using a 10 pixel box car average and the color bar has been

dynamically stretched to provide a common intensity representation from image to image while

at the same time maximizing contrast in the low signal to noise level images. The average

background count rate in the five processed images was 0.598 +/- 0.088 counts per pixel, whereas

the count rate on the planet without auroral emission was 0.0654 +/- 0.094 counts per pixel. This

suggest, as the images indicate, that there is no statistically visible planet limb to aid in

interpreting the planetary coordinates. The limb and auroral zone overlays that are shown are

determined by constructing a planetary coordinate grid and two sets of auroral zones: 1) L=6,

associated with the Io plasma torus, and 2) L=infinity, associated with the last closed

magnetospheric field line using the 04 magnetic field model [Acuna and Ness, 1976] and an IDL

program written by Dr. Tim Livengood to process IUE spectra from Jupiter. The finite spread

to the auroral zones shown are simply due to the rotation of the planet during the 18 minute

exposure. Peak count rates on the images lie between 0.88 and 1.67 counts per pixel which



correspondsto auroralintensitiesbetween20 and50kiloRayleighs(kR), yet the low sensitivity
of the dual filter FOCcombinationsetsa detectionthresholdrangebetween10and20 kR. As
suchonly thebrighterauroralfeaturesarevisible in the imagesandlow emissionintensitiesover
largeareascanmasklargeuncertaintiesin theauroralpower(SeeTable 1; imagefeatures101b,
101c,302b, and 402b wherean attempthasbeenmadeto estimatethe emissionuncertainty
associatedwith diffuseemissionsover largeareas.Theselectedregionsareshownin Figure 3
wherea 10by 10block averagerepresentationof the imagewith a box overlaydesignatingthe
selectedareasare shown and Table 3 where the averagecount valuesand their associated
uncertaintiesarelisted.)

TheNAZ image(image#101in Table 1)showsa bright centralfeatureneartheCentral
Meridian Longitude(CML= 163-173degreesSxHlongitude)and thereforea reasonableestimate
of the Sw longitudeof the emissionfeaturecan be estimatedand lies between160 and 173
degrees.The bifurcatednatureof the sourcecan be explainedby either spatial (5 degreesof
longitude)or temporal(I0 minutes,dueto planetaryrotationduring theexposure)variability in
the source.The bright source location (image #101a) is most consistent with a middle
magnetosphericsource(halfwaybetweenL=6 andthelastclosedmagnetosphericfield line), but
apointing uncertaintyof about1 arcsecond(thesizeof the markerfor celestialN and E) spans
therangeof auroralzonesconsideredandmakesthedesignationtentativeat best.Someweaker
emission(image#101b)polewardandwestwardof the centralbright spot is just barelyvisible
abovethe backgroundasis thearea(#101c)to the eastof the bright centralspot.Theseareas
mayrepresenta weaker"polaroval" emissionthatis moreclearlyseenat longerwavelengthsin
the imagesof Caldwell et al. (EOS,??).TheotherNAZ image(#102)suffersfrom a high noise
level that negatesmeaningfulanalysis.

The first SAZ imageis (image#201from Table 1).In this imagemostof theemission
appearsto lie along the limb of the planet,thusmakingit difficult to estimatethe longitudinal
positionand intensity of the emission.The CML of this imageis 43 degreesSni.Most of the
emissionappearsto lie neara longitudeof 180degrees(#201a,westwardedgeof auroralzone),
but anotherweaker(?) zoneappearsnear0 degrees(#201b,eastwardedgeof theauroralzone).
However,image#202taken1hr 27 mnlaterat aCML longitudeof 95degreesshows emission
from the centerof the imagedauroral zone (near 100 degrees)and suggeststhat significant
changesin theauroralzonemorphologyoccurredin the interveningtime period.The extentof
the limb emissionsare most consistentwith an auroral zone size which correspondsto the
boundaryof the last closedfield lines (ie., maps to near the magnetopauseboundary).The
intensitieslisted in Table 1 for this imageareuncertaindueto the presenceof limb brightening
effects.

The imagepair 301302provideinformationaboutthetemporalvariability of theauroral
emissions.Image#301(CML=5 degrees)showsno detectableemissionabovethebackground.
Whereas,image#302 (CML=56 degrees)showsa bright emissionfeaturebetween20 and 30
degrees;a region that shouldhavebeenclearly visible if present1 hr 28 mn earlier in image
#301.This suggestovera factorof threevariationin theauroralintensityduring thetime period
spannedby these two images.Image #302 is also particularly interesting from a Ulysses



encounterpoint of view, sinceat thetime of the imagetheHISCALE experiment[Lanzerottiet
al., 1992]hadjust beenturnedon after closetapproachand wasobservingprecipitatingenergy
fluxesof electronson theorderof 1ergcm2 s_ (-20 kR of emissioncorrespondingto light blue
areasjust abovethe background)at the dusk edge of the planet (Sul-305 degrees,L~16).
Although the conjugateauroral point is just off the field of view of the image a duskward
extensionof the diffuseauroralemissionseensurroundingthecentralbright spot in an auroral
bandat L>16 is of a consistentbrightestand location to correspondto themeasuredelectrons
of HISCALE. Again as in image 201 the auroral zone is moreconsistentwith a mappingto
L>15,yet hereagainpointing uncertaintiesmustbecarefullyconsidered.Onceagainasin image
#101 the complex structureof the central bright emission featurescan be explained by a
combinationof temporaland spatialstructureof the auroralprecipitationzones.As a matterof
fact in image #302 someof the structuremust be spatial becausethe large separation(>1
arcseconds)of hot spotscannotbeexplainedby rotationof a time variablesourcealone.

Finally the imagepair 401 41)2againillustrate both the temporaland spatialvariability
of thesource.No detectableemissionabovebackgroundis seenin image#401(CML=350-360
degrees),but 1 hr 26 mn later an emission(image#402a)appearsnear300 degreesCML; a
longituderangethat shouldhavebeenvisible in image #401. The magneticlatitude in 402 is
againmoreconsistentwith auroralemissionthat mapsto themagnetopauseboundarythanwith
emissionthatmapsto the Io plasmatorus.

HST FOC Images: Discussion

A major consideration in placing these HST FOC images in the context of past Voyager

UltraViolet Spectrometer (UVS) and International Ultraviolet Explorer (IUE) observations is the

low signal to noise ratio of the images and the resulting sensitivity threshold between 10 and 20

kR of emission over large areas of the high latitude region which would not be visible above the

background. Clearly these images are a high spatial resolution tracer of the variations in the

auroral bright spots and not as good of an indicator of the more diffuse auroral emission or

correspondingly of the total auroral power output. Integrated power numbers Ior the input power

required to produce these bright emissions range from 10 _° to 10 _2 Watts in both the SAZ and

NAZ. However, if we assume that a 20 kR band from 65 to 85 degrees may exist below the

detection limit of the FOC then up to 4 x 10 _3 W of input power may be present, but

unaccounted for by the present observations. This also would imply that less than 10% of the

emission is round in the bright spots, whereas Herbert et al.'s [ 1987] analysis of the Voyager data

suggest that between 20 and 30% of the emission is concentrated in the bright auroral emission

regions. Furthermore, Herbert et al. [1987] give estimates of the emitted power (in their Table

2) which can be used to estimate the input power using the emissions efficiencies given by Waite

et al. [1983]. Their results give values for the total auroral power input for Voyager 1 inbound

of 1.2 x 10 _4 Watts and for the outbound 4 x l0 _3 Watts and an estimate tbr Voyager 2 of 1. I

X 1014 Watts. Livengood [1991] has performed an extensive analysis of the IUE Jovian aurora

data set. Using the information from Figure 5.9 of Livengood [1991] and the modeled emission

efficiencies from Waite et al. [1983] we obtain an average auroral H, Hzemission power of 4.4

x 10 _2Watts (both poles) and an input power of 2.4 x 10 _3W with a one sigma variance of ~ 1
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x I0)3Wattsandindividual datapointsthat show up to a factor of six variation in the emitted

power over the span of less than one month. The limited data set of Livengood [199 I] spans over

I0 years with relatively greater sampling since 1988, but there are no indications of a long term

trend in the auroral power output. Placing the measured and inferred auroral power output of the

FOC images in the context of the UVS and IUE data suggest that: I) the majority of the emitted

auroral power is in diffuse and weak features below the sensitivity threshold of the FOC, 2) the

auroral output power during the Ulysses encounter was in the range of it's observed average as

determined by IUE (I to 3 x 1013 Watts), and 3) the aurora is randomly time variable on time

scales as short as I0 minutes (given a temporal interpretation of the bifurcation of the bright spot

in image #I01), and certainly varies by over a factor of three in brightness on time scales of
hours.

The UVS and IUE data sets also indicate a systematic variation of the intensity of the

auroral emissions in both the NAZ and SAZ as a function of Sm longitude. Although these bright

regions are identified in the FOC data set (image #101 for the NAZ, central bright spot at -170

degrees; image #302 for the SAZ, central bright spot at -25 degrees), the considerable spatial and

temporal variation that occurs in time spans of less than two hours in the set of eight FOC

images reported here suggest a much more complex pattern of variability (at least for the

brightest auroral emissions) and further suggest that part of the systematic variance from IUE and

UVS may be due to geometrical considerations of a large spectrometer slit viewing an increasing

area of diffuse and distributed auroral emission at certain preferred Sm longitudes.

Information on the spectral variations of the Lyman alpha and Lyman and Wemer band

systems cannot be inferred from the single filter set used in the reported FOC images. As a

result, information about the H 2 band color ratio as a function of longitude reported by both IUE

and UVS, which gives information on the input particle energy spectrum and/or the changes in

the hydrocarbon atmosphere, cannot be compared at present. However, by mixing the different

images from the three sets of observations it may be possible to draw some conclusions about

systematic variations in the emission spectrum (see Table 3). The one caveat is the high degree

of variability will make any spectral comparison/Tom one image to the next hard to quantify.

The most exciting new piece of information comes from the high spatial resolution that

can be obtained from HST. The small bright discrete sources seen in the data set put obvious

constraints on the magnetospheric processes responsible for the precipitating particles. This

patchy and discrete structure is also present in the observed high-latitude magnetospheric particle

populations observed by the HISCALE particle detector on the Ulysses spacecraft [Lanzerotti et

al., 1992]. Furthermore, the location of the discrete features in latitude (although individually

accurate to one arcsecond due to pointing uncertainties) collectively are consistent with a

precipitating particle origin in the middle (NAZ) or outer (SAZ) magnetosphere, which is again

consistent with the measurement by HISCALE of precipitating electrons in the middle and outer

magnetosphere. The limited data available, however, make a comparison to Voyager UVS derived

auroral zone [Herbert et al., 1987] difficult to carry and further HST observations are needed to

verify the present result. The inference to be drawn from this information is that the Jovian

aurora is more Earth-like than previously thought and that acceleration of electrons carrying field-

aligned currents in the middle and outer magnetosphere may be largely responsible for the
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discreteauroralemissionfeaturesseenby HST in thesouthernauroralzone.

ROSAT Observations

The ROSAT Position Sensitive Proportional Counter (PSPC) acquired nine data segments

between April 23, 1991 and April 25, 1991 that have the Jupiter disk within the field of view.

The times for each segment are listed below in Table 4. Due to the low count rates in each of

the individual data segments the portion of the image which contained the disk of Jupiter (with

a factor of two spatial margin) was extracted from each of the nine data segments, individual

background subtractions using clear sky were performed, and the resulting data was combined

into a single spectra. Therefore no information exist about the possible variation of the spectra

as a function of Jupiter rotational phase. However, the single spectrum has been thoroughly

analyzed in the context of a best fit bremsstrahlung and a best fit two emission line model. The

data along with the results of these best fit models are shown in Figure 4. Please note that the

model fits have been convolved with the proper energy resolution and energy dependent quantum

efficiencies to allow a comparison with the extracted PSPC data. Therefore, the data shown are

not to be interpreted as spectra, but as spectra convoluted with the PSPC response function.

Although, the signal to noise is low in the data set due to the small amount of on-Jupiter

observation time in the present data set, the two line model is clearly a better fit with a chi

square that is over a factor of two better than the best fit bremsstrahlung model (and also a factor

of two better than the best power law fit which is not shown in the figure).

ROSAT Discussion

The total x ray power inferred from the analysis is 1.3 to 2.1 x 109 Watts depending on

whether the model fit assumed is the two line or the bremsstrahlung, respectively. This is within

a factor of three of the 4 x 10 9 Watts reported from the Metzger et al. [1983] Einstein x ray

observations. The observed comparison is within variations that are associated with changes in

the ultraviolet auroral output [Livengood, 1991]. Furthermore, in agreement with Metzger et al.

we conclude that from bremsstrahlung x ray modeling that the model efficiency (5.6 x 107;

Waite, 1991)suggests that over 3 x 10 _5Watts of auroral electron precipitation would be required

to produce the observed x ray emission from an electron bremsstrahlung source. However, the

factor of two better energy resolution available with ROSAT (as compared to Einstein) also

allows a spectral interpretation of the results. This data as shown in Figure 4 suggests that a two

line emission model produces a better fit (by a factor of two in chi square) than does the best

bremsstrahlung fit. Yet the line model fit has two components, a narrow component near 0.2 KeV

and a broader component centered at 0.9 KeV, which are not consistent with the Metzger et al.

interpretation of S and O K-shell emission at 2.3 and 0.52 KeV, respectively. Reference to the

soft x ray emission tables of Raymond and Smith [1977] does indicate a series of S(VII)

recombination lines near 0.2 KeV and a series of O(VII) recombination lines near 0.9 KeV which

are strong candidates for explaining the observed emissions (see Figure 5). The production of

these emission lines occurs as a result of recombination lines that are produced from the slowing

of the energetic ion beam as it enters the Jupiter upper atmosphere.
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Chargestateequilibrium of the ion beamin the atmosphereresults from competition
betweenelectroncaptureandstrippingwhich arechargestateandenergydependent.

Stripping: S,O÷_q_ + H, H_ _ S, O ÷q + H, H 2 + e

Capture: S, O +q + H, H_ -_ S, O+_qL)+ H, H2+

We estimate that in the electron capture process 10% of the reaction exothermicity goes

into the excitation of recombination lines. If the initial charge states are S(VII) and O(VII) the

resulting emission is in the soft x ray wavelength regime.

Recombination excitation:

S(VIII), O(VIII) + H, Ha --) S(VII), O(VII)" + H, H2 +

S(VII), O(VII) " -+ S(VII), O(VII) + x ray

The high charge states necessary to produce these emissions are the result of the incident

ion beam energy and the fact that electron stripping and capture processes result in a rapid charge

state equilibrium being established as the beam encounters the upper atmosphere. This point is

illustrated (Figure 6) for energetic oxygen where we have presented the equilibrium fraction of

the various charge states as a function of beam energy (results from private communication with

T. E. Cravens, 1992). The figure indicates that an O(VII) charge state will occur for all ions that

enter the atmosphere with an energy greater than -700 KeV per amu. That such ions exist in the

Jupiter magnetosphere and probably precipitate between L=7 and 10 has been demonstrated using

Voyager data by Gehrels and Stone [1983]. They estimate that between 1012 and 10 _3 Watts of

oxygen and sulfur with energies greater than 700 KeV per amu is precipitating into the Jupiter.

This implies that an efficiency of 0.01 to 0.1% is required from x ray recombination processes

to explain the present x ray aurora in a manner consistent with the observed loss of energetic

oxygen and sulfur by Voyager [Gehrels and Stone, 1983]. Such an efficiency appears to be quite

reasonable in the context of the modeling of energetic oxygen aurora at Jupiter by Horanyi et al.

[ 1988] and detailed modeling calculations are now in progress.

However, we further note that as pointed out by Gehrels and Stone [1983] the observed

energetic ion precipitation does not contain sufficient power to explain the observed ultraviolet

aurora and extrapolations to 40 KeV per amu are required to supply this additional power. Such

an extrapolation is not necessary to explain the observed x ray emissions. We therefore, conclude

that in light of the HST Ulysses results, both electrons and ions play a role in the Jupiter auroral

emissions, but that the bulk of the ultraviolet emissions (and thus a major portion of the power

input) comes from electron processes, which result from processes in the outer magnetosphere

and not from energetic ions precipitating from the middle magnetosphere. Such a scenario forms

the new paradigm of the Earth-like aurora at Jupiter.
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Figure Captions

Figure la. Model Jovian auroral spectrum of the H Lyman alpha and H 2 band emissions.

Figure lb. The convolution of the model spectrum with the wavelength dependent filter and

quantum efficiencies response curves tbr the HST FOC F130M/F140W.

Figure 3. Ten by ten block averaged representation of the full set of HST FOC images with

boxes indicating positions of intensity information extraction.

Figure 4. Combined ROSAT PSPC photon energy spectrum and the model curves tot a best fit

two line model and a best fit bremsstrahlung model convoluted with the detector response

function.

Figure 5. Two line model fit and the wavelength location and relative intensity of known

recombination emission lines from S(VII) and O(VII).

Figure 6. Equilibrium fraction for O ÷q (q = 0, 8) charge state distributions as a function of ion

energy.
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Table 2. Spectra for Caldwell, Stern, and Paresce

BAND

CALDWELL

(FI40W, F152M)

STERN

(F130M, F140W)

PARESCE

(F12OM, FI4OW)

Lya 0.034 (I.340 0.828
1230-1650 0.962 0.648 0.149

1230-1300 0.015 0.385 0.106

1557-1619 0.290 0.010 0.004

Total 1.64E-5 6.21E-6 1.29E-5

(cps/pixel)



Table 3. HST FOC IntensityDetermination

DESIGNATED IMAGE BLOCK

Image 101

IMAGE COORDINATES

IX 1:X2, Y l:Y2[

AVERAGE COUNTS

AND VARIANCE

(per pixel)

101a [16:23, 14:23] 0.95_-+0.21

101b [10:16, 28:381 0.74+-0.11

10 lc [31:35, 4:101 0.73+-0.10

bcl(101) [5:13, 3:13] 0.63+_0.09

[off planet]

bc2(101) [34:44, 34:44] 0.61+_0.09

[on planet, no auroral

Image 102 no analysis attempted due to high noise level

Image 201 201a [10:18, 25:38] 0.90+_0.16

201b [36:42, 2:11] 0.91+_0.12

bc 1(201) [4:14, 4:14] 0.62_+0.08

bc2(201) [25:35, 25:351 0.70_+0.10

Image 202 202 [20:26, 22:28] 0.88+_0.14

bc 1(202) [5:15, 5:15] 0.56-+0.09

bc2(202) [30:40, 30:40] 0.60+_0.09

Image 301 no analysis attempted due to low signal level

Image 302 302a [29:37, 7:14] 1.00+_0.16

302b [24:29, 20:29] 0.83_+0.12

bc1(302) [5:15, 5:15] 0.66_+-0.09

bc2(302) [30:40, 30:401 0.77_+0.11

Image 401 no analysis attempted due to low signal level

Image 402 402a [29:37, 4:9] 0.85+_0.12

402b [24:29, 17:24] 0.71_+0.10

bc 1(402) [5:15, 5:15] 0.52-+0.09

bc2(402) [30:40, 30:40] 0.59+-0.08



Table4. SegmentTimes

START

4/23/91 12:52:32
4/23/91 22:03:42
4/24/91 03:11:37
4/24/91 12:51:27
4/24/91 19:00:44
5/24/91 03:10:28
5/24/91 11:15:52
5/24/91 12:42:06
5/24/91 17:22:04

STOP

13:01:55
22:31:58
03:26:58
13:00:54
19:12:41
03:24:53
11:23:17
12:59:11
17:40:20
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Or,:,,._INAL PAGE

COLOR PHOTOGRAPH

Figure 2a. Reduced HST FOC image of the north pole showing bright auroral features and

shading that indicate Jovian magnetic coordinates for Io plasma torus auroral zone low latitude

circle and magnetopause auroral zone smaller inner circle.
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Figure 2b. Reduced HST FOC images of the south pole showing bright auroral features and

shading that indicate Jovian magnetic coordinates for Io plasma torus auroral zone low latitude

circle and magnetopause auroral zone smaller inner circle.
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Figure 3b
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